Modified Geometric Distribution of Certain Order and Some of its Properties

Okoli, O.C.

Department of Mathematics, Chukwuemeka Odumegwu Ojukwu University, Uli Campus Anambra State Nigeria

*Corresponding author’s email: odicomatics@yahoo.com, odico2003@yahoo.com

ABSTRACT

In this research work, we present a new distribution function that modifies and generalizes the geometric distribution of order \(k \) which was introduced by Philippou et al. (1983). The associated statistics, generating function, and its relationship with some other discrete distributions are established. The results obtained in this paper improve, generalize and complement the works of several authors in the literature.

Original Research Article

Received: 22nd Feb., 2018
Accepted: 11th Mar., 2018
Published: 14th Mar., 2018

Keywords:
Distributions of order \(k \), Generating functions, Discrete random variables

1. Introduction and Preliminaries

Philippou et al. (1983) introduced the distribution of the number of trials until the first occurrence of consecutive \(k \) successes in Bernoulli trials with success probability \(p \) which they called a negative binomial distribution of order \(k \). This distribution has caught the interest of researchers, owing to the work of Philippou et al., (1983) whose contribution in this field seems to be very important. Philippou et al. (1984) studied a negative binomial distribution of order \(k \) and defined a Poisson distribution of order \(k \), attention has been paid to interrelationships among the so-called discrete distributions of order \(k \) and their exact distribution theory has been developed extensively by many researchers. For any fixed positive integer \(k \), let \(N_k \) denote the number of independent trials with success probability \(p \) \((q = 1 - p)\) until the first occurrence of consecutive \(k \) successes. Philippou gave the following definition for the probability mass function of the event \(\{N_k = x\} \) (where \(\{N_1 = x\} \) reduces to the standard geometric distribution);

Definition 1.1 Random variable \(N_k \) is said to have a geometric distribution of order \(k \) with parameter \(p \) if the probability mass function (pmf) is given by

\[
f_k(x) = P(N_k = x) = \sum_{x_1 + 2x_2 + \cdots + kx_k = x - k} \binom{x_1 + x_2 + \cdots + x_k}{x_1, x_2, \ldots, x_k} p^{x_k} \left(\frac{q}{p}\right)^{x_1 + 2x_2 + \cdots + kx_k}; \quad x \geq k \quad (1.1)
\]

Where the summation is taken over all non-negative integers \(x_1, x_2, \ldots, x_k \) satisfying the condition \(x_1 + 2x_2 + \cdots + kx_k = x - k \).

Ever since then, related concepts have been introduced, reliability theory of the consecutive-\(k \)-out-of-\(n \):F systems and studied by Kontoleon (1980), Chiang and Niu (1981) and Derman, Lieberman and Ross (1982). Several related concepts on discrete distributions of order \(k \) were studied by Lambiris and Papastavridis (1985), Fu (1985; 1986a; 1986b), Fu and Beihua (1987), Aki
It is quite interesting how the classical geometric distribution and related discrete distributions has been generalized and developed by above authors. However, these generalizations of classical geometric distribution is by no mean exhaustive, hence, in this research work, we introduce a new distribution function for a class of arbitrary sequence of S, F (where S and F means success and failure) events that modifies and generalize the geometric distribution of order k. Now, let $E_x(l_m, f_m)$ be a sequence of S, F (binary) events that terminate at the x^{th} trial in which repetition is allowed. If we suppose that this terminal point, is the point at which the event of interest occurs (success). For a given x^{th} terminal point of trials in which the event of interest occurs, observe that this sequence of event forms a partition on x. Suppose $E_x(l_m, f_m)$ partitioned x into k-parts such that $E_x(l_m, f_m)$ repeat itself x_m time ($m = 1, 2, ..., k + 1$) then we consider the sequence of events $E_x(l_m, f_m)$ with support on M define as follows

$$E_x(l_m, f_m) = (S^m F^m)^x_m; \quad l_m, f_m \geq 0; \quad m \in M, \quad x \geq 1 \quad (1.2)$$

Where l_m, f_m are non-negative integer functions of m, with support on $M = \{1, 2, ..., k + 1\}$.

Definition 1.2 Let $N_{k+1; k+1}$ be a random variable that counts the number of trials until the occurrence of event of interest $E_x(l_{k+1}, f_{k+1})$ in (1.2) with success probability $p (q = 1 - p)$, then we say that $N_{k+1; k+1}$ follows a modified geometric distribution of order (l_{k+1}, f_{k+1}) denoted by $MG_{k+1; k+1} (\cdot ; p)$ if the probability mass function (pmf) is given by

$$f_{k+1; k+1} (x) = P(N_{k+1; k+1} = x) = \sum_{x_1, x_2, ..., x_k; i_1, i_2, ..., i_k} \sum_{m=1}^{\infty} l_m x_m + \sum_{m=1}^{\infty} f_m x_m = x - l_{k+1} - f_{k+1}; \quad p_{k+1} = 1 - \sum_{m=1}^{\infty} p^{l_m} q^{f_m} \quad (1.3)$$

Where the summation is taken over all non-negative integers $x_1, x_2, ..., x_k; i_1, i_2, ..., i_k; j_1, j_2, ..., j_k$ satisfying the condition

$$\sum_{m=1}^{\infty} l_m x_m + \sum_{m=1}^{\infty} f_m x_m = x - l_{k+1} - f_{k+1}; \quad p^{l_m} q^{f_m} = 1 - \sum_{m=1}^{\infty} p^{l_m} q^{f_m}$$

Then we say that $f_{k+1; k+1}$ is a geometric distribution of order (l_{k+1}, f_{k+1}).

Is easy to see that (1.3) is a proper probability distribution, and moreover, is general than (1.1) . To see this, if we take a particular case of (1.2) and define

$$l_m = \{1, m = 1, 2, ..., k \quad \text{and} \quad i_m = m - 1 \quad (1.4)$$

So that (1.2) becomes

$$E(m - 1, 1) = S^{m-1} F; \quad m = 1, 2, ..., k \quad \text{and} \quad E(k, 0) = S^k \quad (1.5)$$

If we substitute the definitions for l_m and f_m in (1.4) into (1.3), we easily obtain (1.1) which are results due to Philippou et al. (1983).

Theorem 1.3 The probability generating function (p.g.f.) of $N_{k+1; k+1}$ distributed as $MG_{k+1; k+1} (\cdot ; p)$ is given by

$$G_{N_{k+1; k+1}} (t) = \frac{\pi_{k+1} t^{\delta_{k+1}}}{1 - \sum_{m=1}^{\infty} \pi_m t^{\delta_m}}; |t| \leq 1 \quad (1.6)$$

Where $\pi_m = p^{l_m} q^{f_m}$ and $\delta_m = i_m + f_m$.

Proof.

$$G_{N_{k+1; k+1}} (t) = \sum_{x=l_{k+1} + f_{k+1}}^{\infty} t^x P(N_{k+1; k+1} = x) = \sum_{x=l_{k+1} + f_{k+1}}^{\infty} \sum_{x_1, x_2, ..., x_k; i_1, i_2, ..., i_k} \sum_{m=1}^{\infty} l_m x_m + \sum_{m=1}^{\infty} f_m x_m = x - l_{k+1} - f_{k+1}; \quad p^{l_m} q^{f_m} \quad (1.3)$$

$$= \sum_{x=l_{k+1} + f_{k+1}}^{\infty} \sum_{x_1, x_2, ..., x_k; i_1, i_2, ..., i_k} \sum_{m=1}^{\infty} l_m x_m + \sum_{m=1}^{\infty} f_m x_m = x - l_{k+1} - f_{k+1}; \quad p^{l_m} q^{f_m} \quad (1.3)$$

$$= \sum_{x=l_{k+1} + f_{k+1}}^{\infty} \sum_{x_1, x_2, ..., x_k; i_1, i_2, ..., i_k} \sum_{m=1}^{\infty} l_m x_m + \sum_{m=1}^{\infty} f_m x_m = x - l_{k+1} - f_{k+1}; \quad p^{l_m} q^{f_m} \quad (1.3)$$

$$= \sum_{x=l_{k+1} + f_{k+1}}^{\infty} \sum_{x_1, x_2, ..., x_k; i_1, i_2, ..., i_k} \sum_{m=1}^{\infty} l_m x_m + \sum_{m=1}^{\infty} f_m x_m = x - l_{k+1} - f_{k+1}; \quad p^{l_m} q^{f_m} \quad (1.3)$$

$$= \sum_{x=l_{k+1} + f_{k+1}}^{\infty} \sum_{x_1, x_2, ..., x_k; i_1, i_2, ..., i_k} \sum_{m=1}^{\infty} l_m x_m + \sum_{m=1}^{\infty} f_m x_m = x - l_{k+1} - f_{k+1}; \quad p^{l_m} q^{f_m} \quad (1.3)$$

144
\[
\sum_{x=0}^{\infty} \sum_{x_{x' \ldots x_k} \mid \sum_{i=1}^{k} x_i = x} (X_1 + X_2 + \cdots + x_k) \frac{p^k}{p} \frac{p^k}{p} \frac{p^k}{p} x_{i+k+1}^{x_{i+k+1}} x_{i+k+1}^{x_{i+k+1}} x_{i+k+1}^{x_{i+k+1}}
\]

\[
= (pt)^{k+1} \frac{q}{p} \sum_{x=0}^{\infty} \sum_{x_{1,2,\ldots,x_k} \mid x_{1,2,\ldots,x_k} = x} (X_1 + X_2 + \cdots + x_k) \times x_{i+k+1}^{x_{i+k+1}} x_{i+k+1}^{x_{i+k+1}} x_{i+k+1}^{x_{i+k+1}}
\]

\[
= (pt)^{k+1} (qt)^{k+1} \sum_{x=0}^{\infty} \sum_{x_{1,2,\ldots,x_k} \mid x_{1,2,\ldots,x_k} = x} (X_1 + X_2 + \cdots + x_k) \frac{p^k}{p} \frac{p^k}{p} \frac{p^k}{p} x_{i+k+1}^{x_{i+k+1}} x_{i+k+1}^{x_{i+k+1}} x_{i+k+1}^{x_{i+k+1}}
\]

Observe that \(MG_{ik+1,jk+1}; p \) is a proper probability distribution, which can be easily deduced from (1.7).

Corollary 1.3 Let \(G_{N_{ik+1,jk+1}}(t) \) be as in theorem 1.3, if in particular we define

\[
j_m = \begin{cases} 1, & m = 1, 2, \ldots, k \\ 0, & m \geq k + 1 \end{cases} \quad \text{and} \quad i_m = m - 1.
\]

Then

\[
G_{N_{i0,j0}}(t) = \frac{(pt)^k (1 - pt)}{1 - t + qt(pt)^k}
\]

Equation (1.8) has been obtained by Feller (1968), Philippou et al. (1983), Aki (1994), Shao and Wang (2015) via different approach. In the remaining part of this work, the results of our corollaries are result obtained by some of the above mentioned authors.

Theorem 1.4 Let \(N_{ik+1,jk+1} \) be as in definition 1.2. Then

(i) \(E(N_{ik+1,jk+1}) = \delta_{k+1} + \frac{Y_{m=1} \delta_m \pi_m}{\pi_{k+1}} \)

(ii) \(Var(N_{ik+1,jk+1}) = \frac{Y_{m=1} \delta_m \pi_m}{\pi_{k+1}} + (1 - 3\delta_{k+1}) \frac{Y_{m=1} \delta_m \pi_m}{\pi_{k+1}} - \delta_{k+1}^2 \frac{Y_{m=1} \delta_m \pi_m}{\pi_{k+1}}^2 \)

Where \(\pi_m = p^{i_m} q^{j_m} \) and \(\delta_m = i_m + j_m \)

Proof

(i) It is well known that \(E(n_{ik+1,jk+1}) = \frac{AG_{N_{ik+1,jk+1}}(t)}{\pi_{k+1}} \bigg|_{t=1} \). But

\[
\frac{AG_{N_{ik+1,jk+1}}(t)}{\pi_{k+1}} = (i_{k+1} + j_{k+1}) p^{i_{k+1}} q^{j_{k+1}} t^{i_{k+1}+j_{k+1}} \left(1 - \sum_{m=1}^{k} p^{i_m} q^{j_m} t^{i_m+j_m} \right)^{-1} + (i_{k+1} + j_{k+1}) p^{i_{k+1}} q^{j_{k+1}} t^{i_{k+1}+j_{k+1}} \left(1 - \sum_{m=1}^{k} p^{i_m} q^{j_m} t^{i_m+j_m} \right)^{-2} + \left(\sum_{m=1}^{k} p^{i_m} q^{j_m} t^{i_m+j_m} \right)
\]

\[
= \delta_{k+1} t^{-1} + \frac{\sum_{m=1}^{k} \delta_m \pi_m t^{i_m+j_m-1}}{\pi_{k+1} \delta_m}
\]

Hence, we have that

\[
\frac{AG_{N_{ik+1,jk+1}}(t)}{\pi_{k+1}} \bigg|_{t=1} = \delta_{k+1} + \frac{\sum_{m=1}^{k} \delta_m \pi_m}{p^{i_{k+1}} q^{j_{k+1}}}
\]
(ii) Observe that
\[
\frac{\partial^2 G_{N_{ik+1,k+1}}(t)}{\partial t^2} = -\delta_{k+1} t^{-2} + \sum_{m=1}^{k} \delta_m (\delta_m - 1) \pi_m t^{\delta_m - 2} \frac{\pi_{k+1} \delta_{k+1} t^{\delta_{k+1}}}{(\pi_{k+1} t^{\delta_{k+1}})^2} \sum_{m=1}^{k} \delta_m \pi_m t^{\delta_m - 2}
\]
Thus,
\[
\frac{\partial^2 G_{N_{ik+1,k+1}}(t)}{\partial t^2} \bigg|_{t=1} = -\delta_{k+1} + \sum_{m=1}^{k} \delta_m (\delta_m - 1) \pi_m \frac{\delta_{k+1}}{\pi_{k+1}} - \delta_{k+1} \sum_{m=1}^{k} \delta_m \pi_m
\]
Using the result in (i) above and after some algebraic simplification, it follows that
\[
Var(N_{ik+1,k+1}) = \frac{\frac{\partial^2 G_{N_{ik+1,k+1}}(t)}{\partial t^2} \bigg|_{t=1}}{\left(1 + \frac{\partial G_{N_{ik+1,k+1}}(t)}{\partial t} \bigg|_{t=1} - \frac{\partial G_{N_{ik+1,k+1}}(t)}{\partial t} \bigg|_{t=1}\right)^2} = \frac{\sum_{m=1}^{k} \delta_m \pi_m \left(\sum_{m=1}^{k} \delta_m \pi_m - \delta_{k+1}\right)}{\pi_{k+1}}^2
\]
Observe that by theorem 1.4, \(E(N_{k,0}) = k + q \left[\frac{1-p^k}{p^k}\right] (1-p)^2\) is a special case, hence we state the following corollary.

Corollary 1.5 Let \(N_{ik+1,k+1}\) be as in definition 1.2. If in particular we define \(j_m = (1, m = 1, 2, \ldots, k)\) and \(i_m = m - 1\).

Then
\[
(\text{i}) \quad E(N_{k,0}) = \frac{1-p^k}{q^{p^k}}\]
\[
(\text{ii}) \quad Var(N_{k,0}) = \frac{1-(2k+1)q^{p^k-p^{2k+1}}}{q^{2p^k}}
\]

Definition 1.6 Let \(N_{i1,k+1,i1,k}, N_{i2,k+1,i2,k}, \ldots, N_{i_r,k+1,i_r,k}\) be independent identically distributed random variables. Then the distribution of \(N_{ik+1,k+1} = N_{i1,k+1,i1,k} + N_{i2,k+1,i2,k} + \cdots + N_{i_r,k+1,i_r,k}\) is called a modified negative binomial distribution of order \((i_1,k+1)\) denoted by \(MNB_{i1,k+1}(\cdot, p)\).

The following theorem is a consequence of definition 1.6.

Theorem 1.7 Let \(N_{i1,k+1,i1,k}, N_{i2,k+1,i2,k}, \ldots, N_{i_r,k+1,i_r,k}\) be independent identically distributed random variables. Then the probability generating function of \(N_{ik+1,k+1,r} = N_{i1,k+1,i1,k} + N_{i2,k+1,i2,k} + \cdots + N_{i_r,k+1,i_r,k}\)
\[
G_{N_{ik+1,k+1,r}}(t) = \left(\frac{\pi_{k+1} t^{\delta_{k+1}}}{1 - \sum_{m=1}^{k} \pi_m t^{\delta_m}}\right)^r ; |t| \leq 1,
\]
where \(\pi_m = p^{i_m} q^{j_m}, \delta_m = i_m + j_m\).

Proof.

Since \(N_{i1,k+1,i1,k}, N_{i2,k+1,i2,k}, \ldots, N_{i_r,k+1,i_r,k}\) are independent identically distributed random variables with p. g. f. \(G_{N_{i1,k+1,i1,k}}\) (as in (1.6)) for each \(j \in \{1, 2, \ldots, r\}\), thus it follows that
\[
G_{N_{ik+1,k+1,r}}(t) = \prod_{j=1}^{r} G_{N_{i_j,k+1,i_j,k}}(t) = \left(\frac{\pi_{k+1} t^{\delta_{k+1}}}{1 - \sum_{m=1}^{k} \pi_m t^{\delta_m}}\right)^r
\]

Theorem 1.8 Let \(N_{ik+1,k+1,r}\) be as in definition 1.6, then the probability \(\{N_{ik+1,k+1,r} = x\}\) is given by
\[
f_{N_{ik+1,k+1,r}}(x) = P(N_{ik+1,k+1,r} = x) = \sum_{x_1, x_2, \ldots, x_k, i_1, i_2, \ldots, i_k} \binom{x}{x_1, x_2, \ldots, x_k} \binom{k}{i_1, i_2, \ldots, i_k} \frac{p^r}{\sum_{m=1}^{k} \pi_m t^{\delta_m}} ; x \geq (i_1 + j_k)
\]
Where the summation is taken over all non-negative integers \(x_1, x_2, \ldots, x_k; i_1, i_2, \ldots, i_k; j_1, j_2, \ldots, j_k\) such that
\[\sum_{m=1}^{k} i_m x_m + \sum_{m=1}^{k} j_m x_m = x - (i_{k+1} - j_{k+1}) r \]

Proof.
By theorem 1.7 the p.g.f. of \(N_{i_{k+1}, j_{k+1}} \) is given by
\[
G_{N_{i_{k+1}, j_{k+1}}} (t) = \left(\frac{\pi_{k+1} \tau \delta_{k+1}}{1 - \sum_{m=1}^{k} \pi_m \tau \delta_m} \right)^r ; |t| \leq 1, \pi_m = p_i q_j, \delta_m = i_m + j_m
\]
Hence by binomial expansion we have that
\[
G_{N_{i_{k+1}, j_{k+1}, x}} (t) = (\pi_{k+1} \tau \delta_{k+1})^r \sum_{x=0}^{\infty} \binom{r}{x} \left(- \sum_{m=1}^{k} \pi_m \tau \delta_m \right)^x
\]
\[
= (p_{i_{k+1}} q_j \tau \delta_{k+1})^r \sum_{x=0}^{\infty} \binom{r}{x} \left(- \sum_{m=1}^{k} \frac{p_i q_j \tau \delta_m}{m} \right)^x
\]
\[
= (p_{i_{k+1}} q_j \tau \delta_{k+1})^r \sum_{x=0}^{\infty} \binom{r}{x} \left(- \sum_{m=1}^{k} \frac{p_i q_j \tau \delta_m}{m} \right)^x
\]
\[
= (p_{i_{k+1}} q_j \tau \delta_{k+1})^r \sum_{x=0}^{\infty} \binom{r}{x} \left(- \sum_{m=1}^{k} \frac{p_i q_j \tau \delta_m}{m} \right)^x
\]
\[
= (p_{i_{k+1}} q_j \tau \delta_{k+1})^r \sum_{x=0}^{\infty} \binom{r}{x} \left(- \sum_{m=1}^{k} \frac{p_i q_j \tau \delta_m}{m} \right)^x
\]

Corollary 1.9 Let \(N_{i_{k+1}, j_{k+1}, x} \) be as in definition 1.6. If in particular we define \(i_m = \begin{cases} 1, & m = 1, 2, \ldots, k \\ 0, & m \geq k + 1 \end{cases} \) and \(i_m = m - 1 \). Then
\[
P(N_{i_{k+1}, j_{k+1}, x}) = \sum_{x=0}^{\infty} \binom{r}{x} \left(- \sum_{m=1}^{k} \frac{p_i q_j \tau \delta_m}{m} \right)^x
\]
\[
= \sum_{x=0}^{\infty} \binom{r}{x} \left(- \sum_{m=1}^{k} \frac{p_i q_j \tau \delta_m}{m} \right)^x
\]
\[
= \sum_{x=0}^{\infty} \binom{r}{x} \left(- \sum_{m=1}^{k} \frac{p_i q_j \tau \delta_m}{m} \right)^x
\]

Where the summation is taken over all non-negative integers \(x, x_1, x_2, \ldots, x_k \); satisfying the condition \(\sum_{m=1}^{k} \frac{x_m - kr}{m} \geq x \).

Definition 1.10. Let \(N_{i_{k+1}, j_{k+1}, \mu} \) be a discrete random variables and \(\mu \) a nonnegative integer constant. Assuming that \(q \to 0 \) and \(r q \to \mu \) as \(r \to \infty \). Then \(N_{i_{k+1}, j_{k+1}, \mu} \to N_{i_{k+1}, j_{k+1}, \mu} \). We say that \(N_{i_{k+1}, j_{k+1}, \mu} \) has the modified Poisson distribution of order \((i_{k+1}, j_{k+1}) \) denoted by \(MP_{i_{k+1}, j_{k+1}} (\cdot; \mu) \).

Theorem 1.11 Let \(N_{i_{k+1}, j_{k+1}, \mu} \) be as in definition 1.10, then the probability \(P(N_{i_{k+1}, j_{k+1}, \mu} = x) \) is given by
\[
\lim_{r \to \infty} \frac{1}{x^r} \sum_{x=0}^{\infty} \binom{r}{x} \left(- \sum_{m=1}^{k} \frac{p_i q_j \tau \delta_m}{m} \right)^x
\]
\[
= \sum_{x=0}^{\infty} \binom{r}{x} \left(- \sum_{m=1}^{k} \frac{p_i q_j \tau \delta_m}{m} \right)^x
\]
\[
= \sum_{x=0}^{\infty} \binom{r}{x} \left(- \sum_{m=1}^{k} \frac{p_i q_j \tau \delta_m}{m} \right)^x
\]
Proof. It suffices to show that the characteristic function of $N_{k+1,k+1,r} - ri_{k+1} + rj_{k+1}$ converges to $MP_{k+1,k+1}(:, \mu)$ as $r \to \infty$. From (1.9) we have

$$\phi_{N_{k+1,k+1,r}}(t) = \left(\frac{\pi_{k+1} \exp(\delta_{k+1}it)}{1 - \sum_{m=1}^{\infty} \pi_{m} \exp(\delta_{m}it)} \right)^{r}$$

Since $|q_i^{k+1} \exp(\delta_{k+1}it)| \leq 1$ for $|t| \leq 1$. It then follows that

$$\phi_{N_{k+1,k+1,r}}(t) \leq \left(\frac{p_{1}^{k+1}}{1 - \sum_{m=1}^{\infty} \pi_{m} \exp(\delta_{m}it)} \right)^{r} = \left(1 - \frac{\mu_j}{\mu_i} \right)^{r}$$

By hypothesis, we have that $q \to 0$ and $rq \to \mu$ as $r \to \infty$. Thus, as $r \to \infty$ we have that

$$\lim_{r \to \infty} \phi_{N_{k+1,k+1,r}}(t) \leq \lim_{r \to \infty} \left(1 - \frac{\mu_j}{\mu_i} \right)^{r} \sum_{m=1}^{\infty} \mu_j \exp(\delta_{m}it)$$

Hence the result follows immediately.

Corollary 1.9 Let $N_{k+1,k+1,j,m}$ be as in definition 1.10. If in particular we define

$$j_m = \begin{cases} 1, m = 1, 2, \ldots, k \\ 0, m \geq k + 1 \end{cases} \quad \text{and} \quad i_m = m - 1.$$

Then

$$P(N_{k+1,0,j,m} = x) = \sum_{x_1, x_2, \ldots, x_k} e^{-\mu k} \frac{\mu_k^{x_k} x_k!}{x_1! x_2! \ldots x_k!}$$

$$\sum_{m=1}^{k} (m-1)x_m + \sum_{m=1}^{k} x_m = x$$

Conclusion

We presented a new modified distribution function whose order of sequence of runs of success-failure is an arbitrary function of k, this modifies, generalize and complement the usual geometric distribution of order k studied by several authors in the literature. The associated statistics, generating function and it relationship with some other discrete distributions using standard augmentation and convergence analysis are established.

References

Shao J. G. and Fu, S., (2015), Some generalisation of geometric distributin in Bernoulli trials by TPFG methods, WSEAS Transaction on Mathematics, 14(2), 146-155

How to cite this article

Licensed under a Creative Commons Attribution 4.0 International License